Nanoscale Materials and Their Properties Objectives, Essential Understandings, and Standards Addressed

This module builds upon the big ideas in a general chemistry course. Assessing students on those topics is necessary scaffolding in order to assess them for understanding nanoscience topics.

Table 3: Big Ideas and Essential Understandings

Big Idea/Essential Understanding

EU1: Measurement and Size

Nanoscience is the study of the fundamental principles of molecules and structures having at least one dimension lying roughly between 1 and 100 nanometers.

EU2: Interdisciplinary Nature

Nanoscience includes the scientific concepts involved in biology, chemistry, and physics

EU3: Properties of Matter

Objects have physical and chemical properties. At the nanoscale level, a large fraction of an object's atoms, ions, or molecules are exposed at its surface; therefore, the object's physical and chemical properties are dominated by surface interactions.

EU4: Scientific Instruments

Scientific instruments can be used to characterize properties of objects, their structure and surfaces, even if the objects cannot be seen.

EU5: Applications/ Public Policy

A sound understanding of nanoscience is required to develop applications of nanotechnology and to inform public policy

NanoLeap

Table 4: Module Objectives and Alignment to Standards					
NSES Content Standards	Big Idea/Essential	Lesson 1/ Objective			
Addressed	Understanding				
Physical Science	EU1: Measurement and Size	1. Define nanoscience as the study of the			
Structure of Atoms	Nanoscience is the study of the	fundamental principles of structures			
Matter is made of minute	fundamental principles of	having at least one dimension lying			
particles called atoms, and	molecules and structures having	roughly between 1 and 100 nanometers.			
atoms are composed of even	at least one dimension lying	a) Compare and contrast the size			
smaller components. These	roughly between 1 and 100	of atoms, ions, and molecules			
components have measurable	nanometers.	to the size of nanoparticles.			
properties, such as mass and		b) Identify structures that are			
electrical charge.		appropriately measured in			
		nanometers.			
		c) Compare and contrast			
		nanoparticle samples to atomic			
		and macro-level samples in			
		terms of the particle size,			
		number of atoms, and			
		operational model.			
Science in Personal and	EU5: Applications/ Public	2. Explain the importance of nanoscience			
Social Perspectives	Policy	research and technology.			
Science and Technology in	A sound understanding of	3. Evaluate the ethical considerations			
Local, National, and Global	nanoscience is required to	associated with nanoscience research			
Challenges	develop applications of	and nanotechnology.			
	nanotechnology and to inform				
Individuals and society must	public policy.				
decide on proposals involving					
new research and the					
introduction of new					
technologies into society.					
Science and Technology	EU2: Interdisciplinary	4. Recognize the interdisciplinary nature of			
Understandings about	Nature	nanoscience.			
Science and Technology	Nanoscience includes the				
Scientists in different	scientific concepts involved in				
disciplines ask different	biology, chemistry, and				
questions, and use different	physics.				
methods of investigation.					
Science as Inquiry	EU4: Scientific Instruments	5. Identify the requirements of nanoscience			
Understandings about	Scientific instruments can be	and nanotechnology, including:			
Scientific Inquiry	used to characterize properties	a) new production methods,			
Scientists rely on technology to	of objects, their structure, and	· · · · · · · · ·			
enhance the gathering and	surfaces, even if the objects	b) new measurement instruments,			
manipulation of data.	cannot be seen.	and			
		c) a cleanroom environment for			
		nanoscale research and			
		technology.			

Table 4: Module Objectives and Alignment to Standards

NanoLeap

NSES Content Standards Addressed	Big Idea/Essential Understanding	Lesson 2/ Objective
Physical Science Structure of Atoms Matter is made of minute	EU3: Properties of Matter At the nanoscale level, a large fraction of an object's atoms,	6. Define extendable solids.
particles called atoms, and atoms are composed of even smaller components.	ions, or molecules are exposed at its surface; therefore, the object's	a) Identify elements and compounds that form extendable structures.
These components have measurable properties, such as mass and electrical charge.	physical and chemical properties are dominated by surface interactions.	b) Compare and contrast extendable solids.
Physical Science Structure and Properties of Matter	EU3: Properties of Matter At the nanoscale level, a large fraction of an object's atoms, ions, or molecules are	 Recognize that an extendable nanostructure's physical and chemical properties are dominated by surface interactions.
Atoms interact with one another by transferring or sharing electrons that are furthest from the nucleus. These outer electrons govern the chemical properties of the element.	exposed at its surface; therefore, the object's physical and chemical properties are dominated by surface interactions.	 a) Relate the size and properties of a sample (both macro-samples and nano-samples) to the ratio of surface particles to interior particles in the sample. b) Define surface energy.
Bonds between atoms are created when electrons are paired up by being transferred or shared. A substance composed of a single kind of atom is called an element. The atoms may be bonded together into molecules or crystalline solids. A compound is formed when two or more kinds of atoms bind together chemically.		c) Compare and contrast the physical and chemical properties of metallic elements and ionic compounds at both the macro and nano scale (i.e., melting point, electrical conductivity, color, reactivity, catalysis, adsorption).
Science in Personal and Social Perspectives Science and Technology in Local, National, and Global Challenges Individuals and society must decide on proposals involving new research and the introduction of new technologies into society.	EU5: Applications/ Public Policy A sound understanding of nanoscience is required to develop applications of nanotechnology and to inform public policy	 Evaluate the implications of nanoscale research and technology.

NanoLeap

NSES Content Standards Addressed	Big Idea/Essential Understanding	Lesson 3/ Objective
Physical Science Structure and Properties of Matter The physical properties of compounds reflect the nature	EU3: Properties of Matter At the nanoscale level, a large fraction of an object's atoms, ions, or molecules are exposed at its surface; therefore, the	9. Identify elements that can form discrete nanoparticles.
of the interactions among its molecules. These interactions are determined by the structure of the molecule, including the constituent atoms and the distances and angles between them.	object's physical and chemical properties are dominated by surface interactions.	a) Recognize that discrete nanoparticles are a result of covalent bonding patterns.
Physical Science Structure and Properties of Matter Carbon atoms can bond to one another in chains, rings, and branching networks to form a variety of structures, including synthetic polymers, oils, and the large molecules essential to life.	EU3: Properties of Matter At the nanoscale level, a large fraction of an object's atoms, ions, or molecules are exposed at its surface; therefore, the object's physical and chemical properties are dominated by surface interactions.	 10. Compare and contrast the properties of several allotropes of carbon (i.e., graphite, diamond, fullerenes). a) Analyze the covalent bonding patterns of carbon and the resulting three dimensional shapes of molecules and carbon allotropes. b) Relate the bonding and structure of carbon nanoparticles to their properties (i.e., corannulene, buckyballs, fullerenes, nanotubes).
Science in Personal and Social Perspectives Science and Technology in Local, National, and Global Challenges Individuals and society must	EU5: Applications/ Public Policy A sound understanding of nanoscience is required to develop applications of nanotechnology and to inform public policy.	 11. Explore the potential applications of carbon nanoparticles and nanotechnology. a) Define nanotechnology as the use of discrete nanoparticles to produce useful products and materials.
decide on proposals involving new research and the introduction of new technologies into society.		 b) Compare and contrast endohedral (cage) and exohedral fullerene compounds and their applications. c) Describe the properties and potential uses of carbon nanotubes.